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PROCEDURE FOR NOISE PREDICTION AND OPTIMIZATION OF 

ADVANCED TECHNOLOGY PROPELLERS 

Wen-Huei Jou and Samuel Bernstein 
Flow Research Company 

SUMMARY 

The objectives of this work are to formulate a good method for 
predicting the noise field generated by an advanced technology propeller 
operating at supersonic tip speed and to formulate a noise minimization 
scheme for the design of the propeller blades. The work of Hawkings and 
Lowson on the noise prediction based on the Ffowcs Williams-Hawkings 
equation has been extended to include a foreward flight velocity. The 
main idea for the extension is that the acoustic wave front propagates 
in a uniform flow as a convected and expanding sphere. Based on this, 
the fundamental solution of the convected wave equation can be easily 
obtained. Acoustic pressure at the observer's position is Fourier 
analyzed to give the frequency spectrum. The Fourier coefficients are 
expressed as integrals over the sources on the blade surface. The 
results show that cones of silence exist fore and aft the rotor plane 
with the semiapex angle -1 1 Q,=sin - 

Mtip 
, where M tip is the tip Mach 

number. This semiapex angle is the same for the foreward and backward 
cones and is independent of the flight Mach number. This result is 
confirmed by the computation of the ray path associated with the emitted 
Mach waves. The strength of the signal is further modified by the 

Doppler amplification factor 1 (1-M' sin2 n)' - M cos n1-l and is stronger 
on the downstream side. These explicit directivity features are believed 
to give better physical insight into the problem of noise generation. 

An optimization scheme for the blade design is formulated. The 
practical application of the scheme depends on the ease of the prediction 
of the load distribution from flow field computation. 

INTRODUCTION 

The motivation behind the present interest in advanced propeller 
aircraft is provided by a potential fuel saving on the order of 15 
percent over a turbofan-powered aircraft (Ref. 1). Over the past several 
years, NASA has sponsored several theoretical and experimental studies 
to explore the feasibility of implementing a new propeller design for a 
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flight Mach number of 0.8 at 30,000 feet. Several configurations of 8- 
blade (and more recently lo-blade) propellers have been studied, and 
while the required efficiency of these propellers appears achievable, 
the potential noise level associated with these designs is extremely 
high. Estimates of the expected noise level by Hamilton Standard and by 
Boeing (Refs. 2, 3) are on the order of 135 to 150 dB for a tip Mach 
number of 1.2. 

The objective of this present work is to formulate a noise compu- 
tation and optimization procedure to enable the investigation of pro- 
peller design changes to minimize the radiated noise. The analysis was 
directed towards the noise associated with the transonic and supersonic 
flow over the propeller, and it will be interfaced with the flow field 
computations currently underway at NASA Ames Research Center. 

This effort was supported by Professor W. D. Hayes of Princeton 
University who served as a consultant on this project. Professor Hayes 
was primarily responsible for the discussion on wave kinematics. 

Propeller Noise Classification 

The noise generated by a propeller with supersonic tip speed can be 
classified into three categories: 

(1) Multiple pure tone (MPT): This noise appears with a disc.rete 
spectrum at the shaft rotating frequency and its multiples, and it is a 
unique feature of a propeller with supersonic tip speed (Ref. 1, 2, 3, 
4). It has been identified as being caused by the merging of the 
rotating shock waves as they propagate away from the blades. Due to 
imperfection of the blade pitch angle and spacing, there will be a 
slight difference in the strength of the shocks as they emerge from the 
blades. When the shocks propagate into the far field, the stronger 
shocks catch up with the weaker ones and they merge into a shock of 
higher strength. Eventually, the shocks merge into a single shock 
rotating at the shaft frequency. MPT is an important component in the 
turbine fan noise. However, with only 8- or lo-blade configurations 
considered for the transonic propeller, this component of noise occurs 
in the very far field where the noise level is sufficiently weak and 
does not cause any concern. Also, it is a component of the noise which 
is hard to eliminate. We shall not pursue MPT in this report. 

(2) Wide band noise: This is noise with a continuous spectrum, 
and it is attributable to turbulence traversing the propeller. For 
supersonic propellers, the wide band noise is much lower than the blade 
passing tone discussed in the following paragraph. 

(3) Blade passing tone (BPT): This is a discrete tone at the 
blade passing frequency and its multiples. It is the rotating steady- 
pressure distribution sweeping past the observer periodically at the 
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blade passing frequency. With supersonic tip speed, a Mach wave system 
is generated around the blade. The passing of this rotating Mach wave 
system through the observer is the main cause of the pronounced noise 
encountered with supersonic propellers. In the remainder of this report, 
we shall focus the discussion on this component of the noise. 

THEORY OF BLADE PASSING TONE 

The work of Gutin on the noise generated by an open rotor (Ref. 4) 
is the only theoretical work published before the late 1960's. The main 
reason is that propellers were then operating at the subsonic tip speed 
range; Gutin's theory gives a very good description of the noise field 
in subsonic fields. 

With the increasing interest in propellers operating at transonic 
and supersonic tip speeds, Gutin's-theory has been proved to be inadequate. 
As the tip speed approaches and exceeds sonic speed, the characteristic 
wavelength of the noise is no longer much larger than the blade dimensions, 
as implied by Gutin's theory. The concept of representing a blade by a 
rotating concentrated force for calculation of the noise field breaks 
down. The noise field now depends on the detailed distribution of the 
source strength on the blade. 

The general theory of sound generated by a surface in arbitrary 
motion has been investigated by Ffowcs Williams and Hawkings (Ref 5). 
They start from Lighthill's equation for aeroacoustics, with additional 
source terms resulting from the assumption that the solid surface is a 
surface of discontinuity within which the fluid is stationary. The 
general solution can be constructed in terms of the fundamental solution 
of the forced wave equation. The general solution is cast in an integral 
form over both the space and time domain involving a Dirac delta function 
in the integrand. Now, the important concept is that the space-time 
domain can be viewed as a general, four-dimensional space over which the 
Dirac delta function projects the integral to a three-dimensional subspace. 
This three-dimensional subspace can be chosen at will for convenience, 
thus resulting in various forms of representation of the solution. One 
of the most important forms is the projection to the physical space 
domain. 

The procedure results in the traditional retarded potential solution. 
The integrand for integration in the space domain is then shown to be 
singular when the relative velocity of the surface to the observer is at 
sonic speed. One may also project the four-dimensional integral to a 
surface of sphere collapsing at sonic speed toward the observer. This 
form of solution avoids the above mentioned singularity, but creates a 
new singularity when the solid surface is moving toward the field point 
at sonic speed with its normal in the direction of radiation. 

Two major works have been published applying the general theory of 
Ffowcs Williams and Hawkings to the supersonic rotor noise. Hawkings 
and Lowson (Ref. 6) base their analysis on the retarded potential solution. 
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They solve the problem in the frequency space and construct a time-wave 
form from its Fourier components, The singularity in the integrand is 
shown to be integrable. The Fourier coefficients are obtained explicitly 
by using a far field approximation. This leads to an integral over the 
blade surface which is evaluated numerically. 

The authors then go on to apply Whitham's theory of weak shock 
propagation to calculate the nonlinear distortion of a time-wave form as 
it propagates into the far field. They show that the nonlinear effects 
substantially alter the wave form (hence the spectrum), but have weak 
effects on the overall sound pressure level. Finally, Hawkings and 
Lowson conclude that the linear theory can be used as a prediction tool 
for the gross features of the acoustic field. Since we shall attempt to 
generalize Hawkings and Lowson's theory to include the forward flight, 
we will expand on some features of their theory in the course of our 
analysis. 

Farassat and Brown (Ref. 7), on the other hand, take up the approach 
using the collapsing sphere solution of Ffowcs Williams and Hawkings's 
general theory. To obtain the time-wave form, a collapsing sphere, 
centered at the observer, is generated from infinity for each time step. 
As the sphere collapses, the intersection of the sphere and the rotating 
blade surface is computed. The intersection line traces a surface, and 
the noise for that time step is evaluated by integration over that 
surface. No far field approximation is made; the procedure is purely 
numerical. The noise field can be mapped out by calculating noise at 
different observers' positions. 

For the purpose of optimization, we are more interested in a scheme 
which contains the following features: 

(1) Fast computation of the noise field even if some approximation 
must be made. 

(2) Some explicit directivity distribution as a guidance for 
choosing observer's position for noise minimization. 

(3) Correct prediction of the sensitivity of the noise field to 
propeller design parameters. 

With this in mind, we have elected to use Hawkings and Lowson's approach 
in outlining a noise minimization procedure. 

In the following section, we extend the work by Hawkings and Lowson 
to include a forward flight. The resulting analysis will be applied to 
compute the noise level at the aircraft cabin, which is one of the major 
concerns for the advanced propeller aircraft. 
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PROPELLER NOISE WITH FORWARD FLIGHT 

Retarded Potential Solution of Convected Wave Equation 

The basic idea in the following analysis is that the wave front 
propagates in the uniform flow as a convected sphere (Ref. 8). Based on 
this, we are able to construct fairly easily the fundamental solution of 
the convected wave equation and cast the general solution in an integral 
form. 

Consider an acoustic disturbance generated at A and propagating 
in a medium with speed of sound a and convecting Mach number M . 
The signal propagates away from -A as a convected sphere, as shown in 
Figure 1. 

Y 
iAd7 c 

/ r/ / 

-“: LaAt 

Figure 1. Wave Front Geometry. 

The center of the convected spherical wave front is at B . For an 
observer at C , the received strength of the signal is proportional to 
f-l rather than r-l . By simple geometry, the relation between r and 
f can be obtained as 
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where 

with 

P 
- = (K2 + B2)' - K , r 

B = (1 - M2)-l 

M2.1. 

The unit vector pointing from A toward C is z, . The retarded 
time to the observer at C is 

‘I 
r^ =t-- . 

0 a 

(1) 

(2) 

(3) 

(4) 

(5) 

The starting point of the subsequent analysis is that the solution 
to a convected Ffowcs Williams-Hawkings-equation, 

1 D2 2 an -- 
a2 Dt2 

P - ’ p = ax ax Q . . . . . , 
i j"' lJ 

(6) 

is the following: 

4lT(p - p,) = an axiax.... / 
Q . . . . . (&T> 

A(‘I - ~~1 

J =J 
d; dT , (7) 

i? 

with the relations (1) _ (5). 

In the preceding solution, the source space 5: is described in a 
coordinate system fixed in space. The moving body (emitter) is viewed 
as distributed sources over the entire space and their strength is non- 
zero only when the solid body passes through that field point (jo . 
In other words, the sources are "pulsing sources" distributed in the 
entire source space. 

In the case of the acoustic emission due to the thickness of and 
forces on the blade, the source space is chosen best in a coordinate 
fixed in the blade. The source strength described in such a coordinate 
system will be in a steady state. The acoustic signal at a point in the 
observer's space 2 and at the observer's time t can then be obtained 
by summing the contributions of the steady sources emitted at the position 
related to the observer's space and time (g,t) by the retarded time. 
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To do this, 
frame 9 

a transformation of the source space from the inertial 
to the blade fixed coordinate 8 is required. The transfor- 

mation is given by: 

Where 

and 

Figure 2. Blade Fixed Coordinate. 

Yl = rll 9 

y2 = r13 sin w'I + n2 cos w'I , 

y3 t Q3 COS UT - T12 sin UT , 

r -r=t-- a (K2 + B2)' - K . 

Without loss of generality, we assume the initial phase of the rotation 
is zero. Since r and g 
transformation is implicitf 

depend on the variable y' , the above 
By some tedius calculations, it can be 

7 



shown that the,Jacobian of the transformation is: 

where Ui is the velocity of the emitter. Note that for M=O , so 
that K=O , and B=l , we recover the result shown by Ffowcs Williams and 
Hawkings (Ref. 5) and by Lowson (Ref. 9); i.e., 

ay. 
J = det (arl 2) = 1 

j (1 + u+ ' 
i 

(8) 

(9) 

The acoustic pressure is then 

4n(p - p,) = -$-/kJ] dS -&-roa(';"' ' Vh J]dS , (10) 

where denotes the values of the integrand at the retarded time, 
and the integration is evaluated over the blade surface. A thin blade 
is assumed, and we sum the force on the top and bottom surfaces of the 
blade. The net force on the planform of the blade is fj ; the thickness 
of the blade is h ; and the rotation Mach number of the emitting element 
is i?i. 

Fourier Components of Acoustic Pressure 

For the reasons mentioned in the Section "Theory of Blade Passing 
Tonell of this report, we follow Hawkings and Lowson's analysis (Ref. 6) 
and expand the solution in Fourier series. To convert the Fourier 
integral from being over the observer's time domain to the emitter's 
time domain, we have 

so that 

-r+At (;(=)) =t , 

dy i a(At> dT+r- 
ay 

d-c=dt . 
i 

(11) 
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But, 

so that 

or 

dyi 
r=U i 

and ?@a _ aT 
ayi ay 9 i 

d.c 1 + ui ?& = dt 
i > 

dt = J-l d-c . 

With this, the Fourier coefficients can be shown as 

cn = & 
/ 

(inw1 +Ij)dS , 
j 

where w is the rotation frequency, n is the harmonic number, S 
is the blade surface, 

and 

2lT 

I=; 
Tp,a(Z+G) l Vh 

I- 
ew 

e 
inw (T + f) dT , 

0 > 

2lT 
wf 

I it 
=- 

j J 
i exp r 

0 

(12) 

(13) 

(14) 

(15) 

I. 
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P(X,Y,d 

For a propeller with supersonic tip speed, the wavklength & is 
comparable to the length of the blade R , since - O(1) . The 
source is noncompact, and it cannot be considered ai a concentrated 
source even in the far field. However, we consider the far field 
approximation as the limit R/r << 1 and & << 1 . The approximate 
expression for f up to the first order is needed. 

The acoustic field is axisymmetr&c and 
on x-y plane with position vector r. . 
have 

we shall consider an observer 
Referring to Figure 3, we 

r 
A- 0 r- (1 - M2 sin2 Q> 5 - M cos L-2 

1 - M2 

(1 - M2) 

(1 - M2 sin2 
. 

L?) 5 
sin R cos 8 5 

0 
(16) 
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So the exponential factor in equation (14) can be approximated by 

E q exp 
> 

[ 
(1 - M2 sin2 &?> - M cos fi 

l exp I inwR sin R cos 8 1 
1 

itinT - p a 
(1 - M2 sin2 n>+ I ' 

with e=w-r+t#l 

and sinR=> . 
0 

WR 
Let a= m be the rotation Mach number of the emitting element, 

with Y= m sin R 

(1 - M2 sin2 a) ' 

and the Doppler factor 

I s = t (1 - M2 sin2 fi)' - M cos ,Q 1. 
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We have* 

I zz 
2poa (f + d) l Vh (1 - M2> 

r. 52 

inwr 
0 inn 

ew 
- M2) % - in@ - - 

a(1 
2 J,W) , 

where J is the Bessel function. For the noise generated by the 
n 

forces, we have 

=alUexp(inti (~+i)) fj q(z-2) d-c . 

For the far field a << 1 , we can neglect the last term in the last 

expression: 
nw? 

p.E 

It can be shown that 
-t 
e 

iar^ -1 M2 sin Q t 

7 j - q. r ax 
I 

(1 _ M2 .1x2 fi>+ - (1 - M2 sin2 S-2) +i J 

The force on the blade is 

fj = (-T, -DsinO,Dcos8) , 

(17) 

exp Sin - inY sin 5 dc = Jn(nY) 

0 

12 



where T and D are respectively the thrust and drag components, so 

that 

1 4 r = - T cos fi - D sin fi sin 8 , 

;i l vi? 

h = KDro (1 f. M2 sin2 n)' r 

cos fi + M(l - M2 sin2 L-L) % - 1 -DsinRsine (l-M2) 

We have 

inw (T + 4) 1 

KDro(l - M2 sin2 Q)' 

. 

i [ 
T - cos R + M(1 - M2 sin2 Q) + 

3 

- D (1 - M2) sin n sin (UT + $I) dT . 

The thrust component is 

=-- cos fl + M (1 - M2 sin2 

'b'o (l - M2 sin2 S-Z)% 

inwr 
-0 in7T 

l exp 

a(1 
_ M2) % - in@ - 2 Jn by> 

cos R -M T . 
(1 - M2 sin2 a) +x (18) 

For the drag component we have 
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= 2inw DC1 - M2) sin R inw r. 5l inTr 

a' Kg0 (1 
1/ exp 

- M2 sin2 Q)' a(1 - M2) 
- in@ - 2 

I 
IT 

cos (n& - nY sin 5) cos 5 dS . 

0 

But 

so, 

/ 

IT 

cos 5 cos (nc - nY sin 5) dc 

0 

IT 
1 =- 
2 

/i [ 
cos (n + l)c - nY sin 5 1 

0 

=- J I 
I 

Jn+l by> + Jnwl by> 
i 

=:J,(nY) . 

2inw D(l - M2) inw 
VO inn 

="KD', m ew 
-- 

a(l-M2)-in' 2 

l J,(nY) . (19) 

Substituting equations (l7), (18) and (19) into equation (13), we have 

inwr 
cn = 

inw 0% inTr -- 
27ra % r. exp 

a(1 -M2) 2 

2 (t + i?) l vh (1 - M2) + T 
cos R 

-M 
(1 - M2 sin2 Q) % 

I 

DC1 - M2) 
m J,(nY) exp (-in@> (cos 0)-l R dR d$ (20) 
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where m, T, D and h are functions of the coordinates (4,R) on the 
blade surface, and 0 is the twist angle. 

We have reduced the Fourier coefficient of the noise at a point 
it to a double integral on the blade planform surface. 

One interesting feature of equation (20) can be observed. For fixed 
R , the $ integral is the Fourier integral of the thickness h and the 
forces T and D . With proper arrangement of the planform sweep, the 
R integration may give a favorable phase cancellation effect for those 
particular harmonics. 

Zones of Relative Silence 

Some of the directivity of the acoustic disturbance can be extracted 
from equation (20). In particular, the Bessel function J,(nY) is expo- 
nentially small for Y < 1 . This is especially so for large n . So, 
Y < 1 defines a zone of relative silence (see Figure 4) in which only 
the subsonic Gutin noise exists: 

y2 = m2 sin R < 1 , 

1 - M2 sin2 fi- 

or 

Direction 
of Flight 

Q < sin-l ’ - 
(m2 + M2) 4 

Figure 4. Zone of Silence. 

(21) 
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This result is in agreement with the following kinematic consideration. 

At each point on the supersonic portion of the blade, one can find 
the ray path of the acoustic waves. 

m 

1 1 

// 
L 

I- 

Ray/ A, 

Mk 
81 

Mach Cone 

sin” + Rotor Plane 

/ 
\ \ 

\ Mach Cone 

Figure 5. Ray Path. 

Referring to Figure 5, we have 

‘ A1 = sin -1 1 
+ sin -1 M 

(m2 + E2)+ 
k 

(m2 + M2)' 

and 

‘ A2 = sin -1 1 

(m2 + M2)' 
- sin 

-1 M 

(m2 + M 2% ’ 
> 

(22) 

(23) 

The ray angles downstream CI1 and upstream O2 are given by the equation 
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sin sin -1 

tan e1 2 = 
, 

,sin -1 1 cos + sin -1 M 

(m2 + M2)% - 
b 

(m2+M2)' - 
I 

+M 

= 
l L ((m2:2*2)TLM (l-m2:M2)") 

(m2 + M2)2 

(fg (1 - m2 tM2)4 km2 YM2 LM 

1 

. 

We obtain thereby 

Cl1 = Cl2 = sin-l 1 

(m2 + M2) 
% 

(24) 

(25) 

From equation (20), it can also be seen that the strength of the signal 
decays as (KDrO)-1 , where KD is the Doppler factor which is dependent 
on the direction R as 

f$)= (1 - M2 sin2 .Q) %5 - M cos R (262 

So, the strength of the signal is stronger on the downstream side as one 
would expect intuitively. 
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Figure 6 shows the qualitative directivity distribution from the 
forgoing discussion. A similar picture is obtained using kinematic 
consideration by Lowson and Jupe (Ref. 10). 

Direction 
of Flight 

-- - 
Silence qL - 

Figure 6. Qualitative Directivity. 

Asymptotic Evaluation of Noise Field for Large Wave Number 

Since we are expecting a spectrum rich in high harmonics, an approximate 
solution may be taken for the high frequency components as h-fa. Following 
again Hawkings and Lowson (Ref. 6), we use the stationary phase method. 

The phase function under consideration is 

where e is a function of (R,S), and 

(27) 

r 
A-” 0 
r- 

- M2) sin R 

- M2) - M2 sin2 
R c~s e 1 . 

(1 Q> + r. I 

ia 



The stationary point (actually, a line) is: 

8 = F ; @i = (1 -,yt ;lin’ 01% . 
a (28) 

wR Since a = m , one can see from equation (28) that the main 

contribution to the integral comes from a constant radius line where a 

ray is pointing directly toward the observer, as shown in Figure 7. 

Rays Not Pointing 
at the Observer 

Rays Not Pointing 
at the Observer 

’ Line of Stationary Phase 

I 

I 
Rotor Plane 

Figure 7. Radius of Stationary Phase and Ray. 

For the thickness component, we cbtain 

inwr 
0% 

a(1 - M2) 

with 

= a (1 - M2 sin2 !d> % 

R. w sin R (29) 
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For the force components, we have 

(CJf = 
j 

--$ //RdRd$/d@fj$q (e)exp (e+i) 
47l 

inwr 
0% 

a(a - M2) 

1 
+ D sin R (1 - M2) R evin' d$ . 

(1 
k 

- M2 sin2 SJ)' cos 0 
R=Ro 

Combining equations (29) and (30) results in the following: 

=h (1 -.:I ;in2 Q)% (1 - M2) 

l 

inx inwr 
C 0% 

n 5'0 exp - 2+ a(1 _ M2) 

Poa2 (mj + 8) l Vhi- T cos i-2 

(1 - M2) (1 
k 

- M2 sin2.Q)' 
-M 

e-in@ de 

R=Ro 

(30) 

(31) 

The asymptotic evaluation of the Fourier integral reduces the surface 
integral to a line integral on the chord, from where the main contribution 
comes. This reduces the computing time needed for the high frequency 
components of the spectrum. 
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OPTIMIZATION PROCEDURE FOR NOISE REDUCTION 

Numerical optimization techniques have attained a high degree of 
refinement. However, very little is known to aid the selection of a 
particular optimization scheme for a given problem. In this study, we 
have evaluated several procedures to minimize the propeller-radiated noise 
which in principle could be implemented with any numerical optimization 
algorithm. The evaluation, however, was guided by our experience of 
utilizing the method of feasible directions and the conjugate gradient 
technique, as developed by Vanderplaats (Ref. 11) for constrained minimi- 
zation problems. In this algorithm, the numerical search procedure is 
performed in the gradient directions to minimize the objective function 
while satisfying a set of constraints. For the advanced propeller problem 
we wish to minimize the noise level at a given point, 

co 

P(h) = 
z 

-inwt e C,(wA , 
n=-00 

(32) 

by varying some design parameters under some constraints. We assume that 
p&t) can be minimized by minimizing the Fourier components C,(W) 9 
and we will focus the discussion on minimization of Cn (WI for a single 
harmonic frequency n . We have identified several procedures applicable for 
advanced transonic propellers as follows: a general noise minimization 
procedure involving all design parameters; an approximate noise minimization 
with propeller sweepback; and noise minimization for high frequency 
noise. In these procedures we assume that the observer is moving with 
the source (i.e., the observer is in the aircraft cabin) at a fixed 
lateral distance shortly aft of the propeller. Such a location is expected 
to have the highest radiated noise level, as illustrated in Figure 6. 

General Noise Minimization Procedure 

The noise function is given in terms of its Fourier components 
C,(w) and expressed in equation (20) which is repeated here for con- 
venience: 
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inwr 
cn = 

inw 
27Ta r exp 

I 
TOO 

p a2(Z + G) l Vh(1 - M2) 
a(1 1." Thickness 

+T cos n -M - m 1 DC1 - M2) Jn(nY) exp (-in@> (cos 0) -' R dR d$ . 
(1 - M2 sin2 n)% 

Thrust Drag (20) 

As identified, the first term in the surface integral of the equation 
includes the thickness distribution h , which is a function of its 
radial and angular location R and $ (see Figure 3). Likewise, the 
next two terms are the thrust and drag contributions. The incremental 
thrust and drag are also functions of each radial and angular location; i.e., 

h = h(R,$) , (33a) 

T = TO,@) , (33b) 

D = D(R,$) , (33c) 

and finally the twist or pitch angle 0 is a function of the propeller 
radial station R : 

0=0(R) . (34) 

If we describe the propeller with N radial and M angular stations, the 
optimization problem can then be stated as follows: 

minimize C,(w) by varying the N(3M + 1) 

design variables h(R,Q) , T(R,Q) , D(R,$) , and 

O(R) subject to the following N(M + 2) + 2 constraints: 
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h(Ro,X) 1 hc(Ro,X) (where X is the blade sweep) , (354 

and 

s T(Ro,4’) W 5 Tc(Ro,4) d@ , 
fl T(R,$) R dR d$ > T - 0 , 

dR dQ, 1. Q 0 - 

(35c) 

The first two N constraints express the structural requirement of 
minimum thickness and, having the loading below either a structural or 
aerodynamic maximum value at each radial location, the final two integral 
constraints express the integrated thrust and torque values to achieve 
the desired propeller performance. 

The practicality of solving this problem will largely depend on the 
time required to compute the flow field around the propeller and to compute 
the gradient of the flow variables with respect to the N(3M + 1) design 
variables. The simpler problem obviously is to consider only the variation 
of the propeller planform to noise as expressed by the thickness distribution. 

Approximate Noise Minimization Procedure 

In this approach we consider only the contribution of the thickness 
to the noise (i.e., only the first term in equation (20)). A first 
order approximation of the planform change by sweeping the propeller 
backward could be treated by computing the noise without regard to the 
coupled changes in the thrust and drag. This simplification essentially 
eliminates the flow field computation of thrust and drag and may provide 
a more feasible optimization procedure. In this procedure, the objective 
function to be minimized includes only the first term in the integral 
and only MN design variables are considered: h(R ,@I and O(R) . 
The constraints are also reduced to N constraints'on minimum thickness 
distribution at each radial location. 

Another approach for an approximate optimization scheme may be 
considered by using the asymptotic solution to the high-frequency noise, 
as illustrated by equation (26). 

Noise Minimization for High-Frequency Noise 

In the asymptotic solution for the high-frequency noise (see equation 
(31)) most of the acoustic signature is assumed to be from a ray directed 
at the observer. The surface integral is then reduced to a line integral 
at the location for which the ray is directed towards the observer. Either 
the general noise minimization scheme or the approximate solution may 
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be applied with the asymptotic noise solution with considerable simpli- 
fication. It should be recognized, however, that the solution would be 
a local solution relative to one observer, and numerous locations should 
be considered to redesign the overall propeller for optimum noise. 

CONCLUSIONS 

The prediction scheme outlined in this report is an extension of 
Hawkings and Lowson's (Ref. 6) work and is intended to facilitate the 
basic tool for the noise optimization in the design of advanced propellers. 

The method gives some explicit directivity distribution. It gives 
good physical insight into the noise generation, particularly in defining 
the existence of the cone of silence, the Doppler amplification factor 
KD and the critical radius for high-frequency components. In terms of 
numerical computation, the procedure is straightforward and fast, a 
factor of considerable importance for numerical optimization. 

The method, however, is limited in some aspects. Except for the 
work by Hawkings and Lowson (Ref. 6), all the existing prediction methods, 
including this work, are based on linear theory. The nonlinear distortion 
of the wave form as it propagates from the emitter is not included. As 
pointed out by Hawkings and Lowson, the nonlinear effect is important in 
determining the spectrum, while linear theory may be sufficient in 
predicting the overall pressure level. The simplicity of the technique, 
however, is quite attractive for design purposes. A second limitation 
is due to the employment of the far field approximation. The observer 
at the cabin wall is roughly at 2.6 times the radius of the propeller. 
At such a close proximity the higher order term in the far field expansion 
may contribute significantly to the noise. Inclusion of the higher 
order terms can be carried out in the future. In many cases, the first 
term of an asymptotic expansion gives fairly good results for moderate 
parameter values. For the optimization scheme, the important feature is 
the ability to predict correctly the sensitivity of the function to the 
various design parameters. It is recommended that the initial optimi- 
zation scheme be applied to the simplest noise prediction scheme. 

A presentation of this work has been included in the Appendix. 

Flow Research Company 
A Division of Flow Industries, Inc. 

Kent, Washington 98031 
December 1, 1978 
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FLOW RESEARCH PRESENTATION NO. 104 

PROCEDURE FOR NOISE PREDICTION AND 
OPTIMIZATION OF ADVANCED 

TECHNOLOGY PROPELLERS 

Wen-Huei Jou 
and 

Sam Bernstein 



OBJECTIVES OF CONTRACT 

0 Review Existing Theories of Propeller Noise 

0 Formulate a Prediction Scheme 

0 Formulate an Optimization Scheme for Noise Reduction 



OUTLINE OF PRESENTATION 

0 Introduction: Past Analyses of Propeller Noise 

0 Extension of Hawkings and Lowson’s Work to Include Forward 
Flight 

0 Optimization Procedure for Noise Reduction 

0 Conclusions 



CLASSIFICATION OF PROPELLER NOISE 

l Multiple Pure Tone 

0 Wide Band Noise 

0 Blade Passing Tone 

Gutin’s Theory: 

l Rotating dipole at center of force 

l Theory breaks down for supersonic speed 

A/R = (a/4/R = a/(oR) > 1 



GENERALTHEORY OF FFOWCS WILLIAMS 
AND HAWKINGS 

Volume Displacement Monopole 

Sources Surface Forces Distributed Dipoles 

Stress Field Distributed Quadrupoles 



GENERAL SOLUTION 
(FFOWCS WILLIAMS AND HAWKINGS) 

TO = t - r/a 

0 General Space-Time Integral 

l Dirac Delta Function Projects the Integral to ThreeDimensional 
Subspace 

w w 
l Subspace Can Be Chosen at Will 



GENERAL SOLUTION (CONT.) 

0 Choose Physical Space as Subspace - Retarded Potential 

0 Choose a Sphere Centered at Observer and Collapsing at Sonic 
Speed (Sphere of Coincidental Arrival) 

- X Surface Solution or Collapsing Sphere Solution 



HAWKINGS AND LOWSON 

0 Method 

l Retarded potential 

l Blade fixed coordinates for source space 

l Fourier analysis 

l Far field approximation 

l Results 

l Qualitative directivity 

l Nonlinear distortion of time-wave form 

l For design purposes, linear theory is sufficient as a 
prediction tool 



w 
cn 

FARASSAT 

0 Method 

l Collapsing sphere 

l Time domain 

l No far field approximation 

@ Results 

l Complete numerical computation for every field point 

l No qualitative directivity 



PROPELLER NOISE WITH FORWARD FLIGHT 

l Uniformly Convecting Velocity 

[lla*(D*/D?)-V*] P = a’/axiaxj..m Qij . . . 

0 Wave Front is a Convected Sphere 

t/r = (K2 + /3*)% -K 

p = (1 - M*)-’ 



GENERAL SOLUTION TO CONVECTED 
WAVE EQUATION 

‘0 - - t-f/a 



TRANSFORMATION OF SOURCE SPACE TO 
BLADE FIXED COORDINATES 

J = det (ayi/a@ = (1 + Ui aT/aYi)-’ 



RETARDED POTENTIAL SOLUTION ON 
BLADE FIXED COORDINATE 

4n (P-PO) = - a/axj [f/f Jl dS 

- a/at 
/ 

[e,a(i% + 6i) l Vh/f l Jl dS 

S: Blade Surface 



FOURIER COMPONENTS 

Cn = 
I 

(p - po)einwt dt 

= 
/ 

(p - po)einolT + r’a)(dtidT) dT 

T + At [gdl = t 

dt = J-’ dT 



FOURIER COMPONENTS (CONT.) 

l Polar Coordinate 
I 
L 

0 

0 

Far 

cn 

Field Approximation 

(R/r) << 1 ; (alnwr) << 1 

= (c&h + (C&f 



FOURIER COMPONENTS (CONT.) 

(%)h = A/(t$yo) \j- (- m + fi) l VhJn (nY) exp kin#[R/cos O]d+dR 

Y = m sin Q/(1 - M* sin2 RI 1/2 



QUALITATIVE DIRECTIVITY 

I. Zone of Relative Silence 

R < sin-l [1 /(rn2 + M~$J = sin-1 [l IMtip] 

e Axis 



QUALITATIVE DIRECTIVITY (CONT.) 

l Wave Kinematics (Hayes) 

\ 

\ 

Mach Cm 

e1 = e2 = sin-l [l /(m2 + M2) “3 



QUALITATIVE DIRECTIVITY (CONT.) 

0 Wave Kinematics (Cont.) 



I 
f 

QUALITATIVE DIRECTIVITY (CONT.) 

II. Doppler Amplification 

l/Kg = 1 (1 - M2 sin2 R)% - M cos Q I -I 

Constant 

v 
Silence 

Strength 



HIGH FREQUENCY APPROXIMATION 

R, = a@ - M2 sin2 n)H /sin Q] 

Rays Not Pointing 
at the Observer at the Observer 

Rays Not Pointing Rays Not Pointing 
at the Observer at the Observer 

’ Line of Stationary Phase ’ Line of Stationary Phase 

I I 
I I 

Rod Plane Rod Plane 



SUMMARY OF NOISE COMPUTATION 
PROCEDURE 

00 
p(jQ) = c 

n 
= -oo einot Cn(o,B 

Cn(O) = K(o, KD, M, n)ll(~,a2h + Ml l VW - M2) 
\.l - 

Thickness 

+ T [cos R/(1 - M2 sin2 Q)% - Ml - D(1 - M2Um 1 

Thrust 
) 

Drag 

l J,(nY) exp (-in+) (R/COS 0) dR d+ 

h = h(R,+l 
T = T(R,+) 
D = D(R,+’ 
0 = O(R) 



OPTIMIZATION PROCEDURE FOR 
NOISE REDUCTION 

Minimize Cn(o) by Varying h(R,# , T(R,# , D(R,# , and O(R) 
Subject to the Following Constraints: 

l Thickness distribution is longer than minimum value at 
each radial location (structural) 

l Integrated thrust at each radial location is lower than a 
given maximum allowable load (structural/aerodynamic) 

l Integrated thrust sufficient for aircraft propulsion 

l Integrated torque compatible with available engine power 
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